• custom vacuum furnaces
  • honeywell vacuum control systems
  • Hot Zone Rebuilds
  • VAH Series Horizontal, Front-loading, Vacuum Heat Treating and Brazing Furnaces
  • vacuum furnace systems and controls quote
  • vacuum technology education and training
Vacuum Furnace Systems, controls and Manufacturing
Vacuum Brazing and Vacuum Heat Treating Services
Thermal Spray Coating services, Plasma and High Velocity Oxy-fuel (HVOF) Spray Coatings and Inorganic Paint and Pack Coatings
Vacuum Furnace Technology column by Dan Herring, Metallography column by George Vander Voort, Vacuum Brazing column by Dan Kay, Vacuum Pump column by Howard Tring and other Educational Resources

Share this post

Submit to DiggSubmit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

VAC AERO News, Education & Training

vertical-vacuum-furnaceVAC AERO Receives Orders for 3 Replacement Hot Zones

VAC Burlington, Ontario, February 16, 2015 - VAC AERO has recently received orders for three complete all-metal hot zone refurbishments for customers in Florida, Connecticut and Indiana, in the Aerospace, Medical and Commercial Heat Treatment industry sectors. The retrofit work is for two horizontal and one vertical furnace. VAC AERO hot zones feature unitized construction for easy removal and maintenance. The lightweight design’s low thermal mass enables faster quenching and longer life. The heat shield package consists of one layer of .020” thick lanthanted molybdenum (Mola) sheet backed by one layer of .010” thick molybdenum sheet, and three layers of .014” stainless steel sheet.

Vacuum Technology with "The Heat Treat Doctor"

vacuum-heat-treat-furnaceDry Lubricants for Vacuum Service

Lubricants in vacuum applications include wet and dry lubricant types, greases and oils. So-called “wet” lubricants tend to stay wet on the surface to which they are applied, while dry lubricants go on wet but dry as they are applied. In general solid particulates do not stick to dry lubricants but they do not tend to last as long as wet lubricants and as such need to be reapplied. By contrast, greases adhere better than oils and tend to last longer. Oil is preferred where the lubricant needs to be circulated. The major disadvantage of conventional liquid lubricants is that they have relatively high vapor pressures (= 1.3 x 10-4 Pa at room temperature) and surface diffusion coefficients (= 1 x 10-8 cm2/s) with low surface tensions (in the order of 18 – 30 dyne/cm) and can volatilize or creep away from areas of mechanical contact resulting in high friction, wear or mechanical seizure.

Vacuum Brazing with Dan Kay

vacuum-heat-treatBraze Inspection – Look for Concave Fillets

As mentioned in an earlier article, external brazing-fillets can be greatly misunderstood. Some people insist that big fillets are needed in brazing, whereas others say that they are not. Lets take another look at brazing-fillets, to show how size and shape of brazing fillets should be correctly interpreted. Please note that a braze fillet is actually a casting along the outside of a braze joint that simply shows that the brazing filler metal (BFM) has melted and flowed along the edge of a braze joint. However, it doesn’t tell you if the BFM has adequately penetrated the joint. Caution is therefore strongly advised to anyone attempting to merely use the size of a braze-fillet as an inspection criteria for judging the overall quality of a braze joint.

Metallography with George Vander Voort

vacuum-furnaceDeformation and Annealing of Cartridge Brass

Copper and its alloys are among the most malleable metals and alloys in existence. Cartridge brass, Cu – 30% Zn, has been used for many years to produce cartridge cases for ammunition due to its superior cold forming characteristics. This article shows the microstructure and hardness of cartridge brass from the fully annealed to the heavily cold worked condition. Then, it illustrates the influence of annealing temperature and time on removing the effect of the cold work and returning the alloy to a very low hardness annealed structure. Cartridge brass, Cu – 30% Zn, is a single-phase Cu-based alloy where the addition of zinc increases the strength of copper by solid solution strengthening. The maximum solubility of zinc in copper at ambient temperature is slightly above 30% Zn.

Vacuum Pump Practice with Howard Tring

gas-quench-vacuum-furnacesConductance in Vacuum Lines

Resistance to gas flow through components that make up a vacuum system has a considerable effect on the pumping speed and pressure obtainable within the system. Any pipe or component that gas has to flow through is a hindrance to the flow of that gas, i.e. it offers resistance to the flow. It occurs in the roughing line, the foreline and the high vacuum piping and affects the amount of time taken to evacuate a vacuum chamber to its required base or process pressure. For example, if a large vacuum chamber is connected to its vacuum pump using a long small bore pipe the gas flow down the pipe will be difficult and the gas will be removed from the chamber very slowly. There is a high resistance to gas flow and the conductance of that small bore pipe is low. Let’s first look at a simple vacuum system, using a single mechanical vacuum pump, the vacuum chamber if often mounted right above the inlet to the vacuum pump.

Front and Bottom Loading Vacuum Furnaces

vacuum furnace-0115Constructed of the finest materials and craftsmanship, VAC AERO’s high performance vacuum furnaces are operator friendly and designed to minimize maintenance and downtime to deliver outstanding quality and  value to commercial and in-house heat treaters alike. VAC AERO’s vacuum furnaces are designed for rapid heating rates to very uniform temperatures at high vacuum levels and can be customized to suit unique applications such as high pressure gas quenching, high temperature heat treating, ultra-clean processing and more. VAC AERO’s high efficiency hot zones are designed for easy maintenance and reduced energy consumption. Our external quench system allows for easy maintenance of the heat exchanger and quench motor. A high efficiency blower and motor combine fast cycle times and quenching speeds to provide uniform gas distribution and superior cooling performance from processing temperatures at pressures of up to 10 bar.