• custom vacuum furnaces
  • honeywell vacuum control systems
  • Hot Zone Rebuilds
  • VAH Series Horizontal, Front-loading, Vacuum Heat Treating and Brazing Furnaces
  • vacuum furnace systems and controls quote
  • vacuum technology education and training
Vacuum Furnace Systems, controls and Manufacturing
Vacuum Brazing and Vacuum Heat Treating Services
Thermal Spray Coating services, Plasma and High Velocity Oxy-fuel (HVOF) Spray Coatings and Inorganic Paint and Pack Coatings
Vacuum Furnace Technology column by Dan Herring, Metallography column by George Vander Voort, Vacuum Brazing column by Dan Kay, Vacuum Pump column by Howard Tring and other Educational Resources

Share this post

Submit to DiggSubmit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

VAC AERO News, Education & Training

dan kay seminarKay & Associates Brazing Seminars

Since brazing plays an important part in your company’s products, plan to have your staff attend one of the high-powered, three-day seminars being held in 2016. Our Brazing Seminars cover all the essentials for successful brazing of commercial and aerospace components. The improvements to brazing operations that have resulted from these seminars have paid for the cost of the seminar many times over at many companies! Register your staff today! They WILL truly benefit from having attended this program!

Next Seminar Date and Location: April 12-14, 2016 - Simsbury, Connecticut

To Register on the Kay & Associates' Website CLICK HERE.

Vacuum Technology with "The Heat Treat Doctor"

vacaero vacuum furnaceMetallurgy for the Vacuum Heat Treater

The role of materials science is to study, develop, design, and perform processes that transform raw materials into useful engineering products intended to improve the quality of our lives. It is said by many that material science is the foundation upon which today’s technology is based and that real-world applications would not be possible without the materials scientist. The discipline has expanded to encompass materials for many highly specialized product applications. The industrial revolution thrust metals into the forefront of technology, and they have stayed there ever since becoming the very foundation on which our modern society is built. One cannot envision a life where our transportation and communications systems, buildings and infrastructure, industrial machines and tools, and safety/convenience devices that are not an integral part of our daily lives.

Vacuum Brazing with Dan Kay

vacuum furnaceStress Concentration

Don’t Blame the Braze because Joint was Poorly Designed, and NO, larger fillets won’t compensate for that! Have you ever heard someone tell you something like this: “Well, brazing may be okay, but if you really want a strong joint, you should weld it!” Such comments are often made when someone sees what appears to be a cracked brazed-joint, such as that shown in Figure 1, and they then assume that (1) the crack they are looking at probably extends all the way through the brazed-joint, and that (2) if the joint had been welded it would not have cracked. In the actual, real-life case shown in the close-up drawing in Figure 1, the comment about brazing vs. welding was actually made by an engineer who saw the part. But he was very wrong! The actual cause of the joint-failure was a poor joint design that placed very high stress concentration right at the edge of the brazed joint.

Metallography with George Vander Voort

vacuum furnacesConducting the Failure Examination

Failures in metallic components may be caused by any of the following factors or combinations of factors: Design shortcomings, imperfections due to faulty processing or fabrication, overloading and other service abuses, improper maintenance and repair and environmental factors. Not all failures are catastrophic. Many failures involve a gradual degradation of properties or excessive deformation or wear until the component is no longer functional. Failures due to wear or general corrosive attack usually are not spectacular failures, but account for tremendous material losses and downtime every year. Of course, early failures of the spectacular catastrophic order capture the most attention-and rightly so. Nevertheless, all failures deserve the attention of the investigator because they reduce production efficiency, waste critical materials, and increase costs. In some instances, they cause considerable damage or personal injury. Finally, failures can result in costly litigations.

Vacuum Pump Practice with Dan Herring

vacuum furnaceOil Sealed Rotary Vane Pumps, Part 1

Oil sealed rotary vane pumps (aka rotary vane pumps) are the primary pumps on most vacuum systems used in the heat treatment industry. They are also referred to as a "backing" pump when used in combination with a booster pump, or with both a booster and secondary ("high vacuum") pump, typically a diffusion style. A rotary vane pump can also be used alone when high vacuum is not required and slower pumpdown is acceptable. Two-stage designs are available, which utilize two rotors in series internal to the pump. Single-stage designs can provide a vacuum of 3 x 10-2 Torr, while two-stage designs can achieve 3 x 10-3 Torr. Due to the prevalence of rotary vane pumps, it is important for designers and users of industrial vacuum equipment to have a good understanding of how these pumps function.

Front and Bottom Loading Vacuum Furnaces

vacuum-furnace-3448Constructed of the finest materials and craftsmanship, VAC AERO’s high performance vacuum heat treating furnaces are operator friendly and designed to minimize maintenance and downtime to deliver outstanding quality and  value to commercial and in-house heat treaters alike. VAC AERO’s vacuum furnaces are designed for rapid heating rates to very uniform temperatures at high vacuum levels and can be customized to suit unique applications such as high pressure gas quenching, high temperature heat treating, ultra-clean processing and more. VAC AERO’s high efficiency hot zones are designed for easy maintenance and reduced energy consumption and an external quench system allows for easy maintenance of the heat exchanger and quench motor. A high efficiency blower and motor combine fast cycle times and quenching speeds to provide uniform gas distribution and superior cooling performance from processing temperatures at pressures of up to 10 bar.

brands