• custom vacuum furnaces
  • honeywell vacuum control systems
  • Hot Zone Rebuilds
  • VAH Series Horizontal, Front-loading, Vacuum Heat Treating and Brazing Furnaces
  • vacuum furnace systems and controls quote
  • vacuum technology education and training
Vacuum Furnace Systems, controls and Manufacturing
Vacuum Brazing and Vacuum Heat Treating Services
Thermal Spray Coating services, Plasma and High Velocity Oxy-fuel (HVOF) Spray Coatings and Inorganic Paint and Pack Coatings
Vacuum Furnace Technology column by Dan Herring, Metallography column by George Vander Voort, Vacuum Brazing column by Dan Kay, Vacuum Pump column by Howard Tring and other Educational Resources

Share this post

Submit to DiggSubmit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

VAC AERO News, Education & Training

vacuum-heat-treatVAC AERO’s Furnace Control System is Versatile and Operator-Friendly!

VAC VAC AERO’s uses the Honeywell HC900 process controller integrated with the Honeywell Experion HS software running on a Windows 7-based PC to provide Supervisory Control and Data Acquisition (SCADA). The Honeywell HC900 controller can connect remote users to the system, link multiple furnaces together, or to other operating systems in a facility. The VAC AERO control system is programmable, logic based and comprised of proven hardware components, suitably hardened for an "industrial shop" environment. The software has been optimised to cover all normal operating and alarm conditions. VAC AERO’s design philosophy is to simplify control by using the program capabilities to perform as many functions as possible, thereby reducing operator dependence. The software is optimised to control the machine functions and furnace temperature and to cover all normal operations, maintenance alerts and alarm conditions.

Vacuum Technology with "The Heat Treat Doctor"

dan-herring-615The Use of Molybdenum in Vacuum Furnace Applications

Vacuum furnace hot zones are manufactured using materials that can withstand temperatures in the range of 1315ºC (2400ºF) and higher. Of the various types of refractory metals in use, none is more common than molybdenum. The popularity and widespread use of molybdenum in vacuum furnaces is due to the wide range of properties that it exhibits, namely: high melting point, 2620ºC (4748ºF), low vapor pressure, high strength at elevated temperature, low thermal expansion, high thermal conductivity, high elastic modulus, high corrosion resistance and elevated recrystallization temperature, between 800º - 1200ºC (1470º - 2190ºF). Mechanical properties of molybdenum are influenced by purity, type and composition of any alloying elements and by microstructure. Properties such as strength, ductility, creep resistance and machinability are enhanced by additions of alloys such as titanium, zirconium, hafnium, carbon and potassium along with rare earth element (La, Y, Ce) oxides.

Vacuum Brazing with Dan Kay

dan-kay-615Removing Magnesium Buildup in Aluminum-brazing Vacuum Furnaces

As mentioned in a previous blog-article, magnesium (Mg), often referred to simply as “mag”, is a highly effective “getter” that is used when vacuum-brazing aluminum. Because Mg is very effective at gettering (reacting with and removing) both oxygen and moisture that may be present in a vacuum-furnace atmosphere during aluminum-brazing operations, it can effectively prevent (or minimize) the reaction of these elements with aluminum, thus allowing aluminum-brazing to occur. However, magnesium is a highly combustible metal, and when it condenses on the walls of a vacuum-furnace during aluminum brazing operations, extreme caution must be exercised in removing the condensed mag from the furnace walls during subsequent furnace clean-up, so that no sparks are generated which could cause rapid ignition of the condensed magnesium, resulting in explosive combustion, and even death. To prevent this, coating the walls of the vacuum furnace with a “non-stick” surface, such as shown in Fig. 1 may be highly effective.

Metallography with George Vander Voort

200-nital nlMetallographic Procedures for Cast Irons

Metallographic techniques for cast irons are similar to those for steels; with the exception that graphite retention is a more challenging task. Recommended procedures to prepare cast irons are given. Colloidal silica is an excellent final polishing abrasive for many metals and alloys. However, for pearlitic cast iron grades, colloidal silica often produces small etch spots on the specimen surface. In this case, OP-AN alumina suspension yields excellent results, much better than standard alumina abrasive powders made by the calcination process. Examples of cast iron structures revealed using a variety of etchants is presented.

Vacuum Pump Practice with Howard Tring

howard-tring-615Conductance and Throughput in Vacuum Pipelines

Let's talk a bit about conductance in vacuum system piping and why it has to be taken into consideration in the design of a typical vacuum furnace or similar vacuum system. Firstly though, we will discuss Throughput. Throughput - Have you ever wondered why vacuum pipes and connections are of several different sizes on any vacuum system? I would suggest that most users don’t really give it any thought. It is what it is. So let’s look at the sections of a vacuum system and again try to visualize those gas molecules, which are so tiny we can’t see them, and understand the conditions at different places in the system. Pumping speed of large mechanical vacuum pumps is usually indicated in cubic feet per minute. That can be denoted in several ways; cfm, cu ft /min or ft3 min-1. This is also shown in metric terms as cubic meters/hour, liters/min and l/min also shown as m3 hr-1 and l min-1.

Front and Bottom Loading Vacuum Furnaces

vacuum furnace-0115Constructed of the finest materials and craftsmanship, VAC AERO’s high performance vacuum furnaces are operator friendly and designed to minimize maintenance and downtime to deliver outstanding quality and  value to commercial and in-house heat treaters alike. VAC AERO’s vacuum furnaces are designed for rapid heating rates to very uniform temperatures at high vacuum levels and can be customized to suit unique applications such as high pressure gas quenching, high temperature heat treating, ultra-clean processing and more. VAC AERO’s high efficiency hot zones are designed for easy maintenance and reduced energy consumption. Our external quench system allows for easy maintenance of the heat exchanger and quench motor. A high efficiency blower and motor combine fast cycle times and quenching speeds to provide uniform gas distribution and superior cooling performance from processing temperatures at pressures of up to 10 bar.