• custom vacuum furnaces
  • honeywell vacuum control systems
  • Hot Zone Rebuilds
  • VAH Series Horizontal, Front-loading, Vacuum Heat Treating and Brazing Furnaces
  • HVOF spray systems
  • Thermal Coatings
  • Thermal, Plasma Spray, Inorganic Paint & Pack Coating Services Quote
  • vacuum furnace systems and controls quote
  • vacuum furnace rebuilds and upgrades
  • vacuum technology education and training
Vacuum Furnace Systems, controls and Manufacturing
Vacuum Brazing and Vacuum Heat Treating Services
Thermal Spray Coating services, Plasma and High Velocity Oxy-fuel (HVOF) Spray Coatings and Inorganic Paint and Pack Coatings
Vacuum Furnace Technology column by Dan Herring, Metallography column by George Vander Voort, Vacuum Brazing column by Dan Kay, Vacuum Pump column by Howard Tring and other Educational Resources

vav_furnace-2.gifThe standard VAV Series Vertical, Bottom-loading, Vacuum Heat Treating and Brazing Furnace can be customized to suit unique applications such as high pressure gas quenching, high temperature heat treating, ultra-clean processing and more.

The furnace is designed to have fast heating rates to very uniform temperatures at high vacuum levels. Standard units are equipped with a gas quench system capable of cooling the load rapidly from processing temperatures at quench pressures up to two bar.

Advanced microprocessor controls are used exclusively to ensure precise control and repeatability. VAC AERO control systems can be integrated with internal networks and offer extensive data collection capabilities. VAC AERO also manufactures auxiliary equipment for quench gas storage and furnace cooling requirements.

Custom or Standard Furnaces Sizes Available


STANDARD OPERATING TEMPERATURE RANGE: 1000°F - 2400°F (538°C - 1315°C)

TEMPERATURE UNIFORMITY: Meets or Exceeds AMS 2750 Requirements.


HOT ZONE:

VAC AERO hot zones have unitized construction for easy removal and maintenance. Lightweight design with low thermal mass and inertia for faster quenching and long life.

  • Work Load Size: Standard sizes up to 84” diameter x 84" high. Larger models are also available.
  • Heating Elements: Customer’s choice of lightweight curved graphite, pure or lanthanated molybdenum strip.
  • Hearth: Constructed with quickly removable hearth rails of pure molybdenum designed to support uniformly distributed loads up to 4000 lbs at 2400°F.

    vert_hot_zone-3.gifRadiation Shields: (Graphite-based Construction):

    The standard graphite-based insulation package consists of three layers of carbon felt with a inner facing of graphite foil bonded carbon composite for added protection and enhanced reflectivity. The heat shield package is supported by a stainless steel assembly that also acts as a manifold to distribute the quenching gas uniformly throughout the workload.

    Radiation Shields (All-Metal Construction):

    For ultra-clean processing applications, VAC AERO also offers an all-metal hot zone construction. The standard all-metal insulation package consists of two layers of pure molybdenum sheet backed by three layers of stainless steel sheet. The heat shield package is supported by a stainless steel assembly that also acts as a manifold to distribute the quenching gas uniformly throughout the workload.

    FURNACE CHAMBER:

    The chamber and heads are a double-wall water-cooled design, primed and painted the customer's choice of colour. The chamber is equipped with all necessary thermocouple jacks, gauge ports, pumping ports and gas quench entries conveniently located for easy access. The tank assembly is vertically aligned with a bottom opening load head. The bottom head and the load are raised and lowered smoothly by a constant speed, ball screw driven lifting jack. Once lowered, the bottom head rolls out from beneath the furnace by means of a powered drive assembly to allow 360° access to the load. The tank is equipped with a powered rotary clamping system to secure the bottom head during processing. A "ground fault" system is used to detect if the load or fixtures touch the heating elements during loading or unloading and will stop the elevator to prevent damage.

    VACUUM PUMPING SYSTEM:

    The vacuum pumpdown is automatic and interlocked. The VAC AERO design uses a holding pump to maintain a low pressure on the diffusion pump foreline at all times. This feature, combined with proper timed sequencing of vacuum valves, virtually eliminates backstreaming of pump oils.

    • Mechanical Pump: Roughing Pump and Booster combination appropriately sized for furnace volume.
    • Diffusion Pump: Varian series complete with charge of Dow Corning fluid.
    • Holding Pump: Rotary vane pump.
    • Main, Roughing and Foreline Valves: Right angle poppet valve with electropneumatic operation.
    • Partial Pressure Capabilities: The furnace can be operated at partial pressures up to 1 torr (1000 microns) of inert gas (argon or nitrogen, whichever is used for quenching). Failsafe hydrogen partial pressure systems are also available.

    GAS QUENCH SYSTEM:

    VAC AERO’s IG Series Quench Gas Storage Systems are available as an option.

    External recirculating inert gas quenching system distributes quench gas through circumferentially located internal nozzles for rapid, uniform cooling of the work load. The system includes:

    • Quench blower powered by electric motor with soft start.
    • Special high efficiency tube/fin heat exchanger.
    • Complete quench piping.
    • Selectable operating pressure.

    vertical_hardwarealarms.gifPROCESS CONTROLS with SCADA:

    The VAC AERO control system is programmable and logic based. The design philosophy of VAC AERO is to simplify control by using the program capabilities to perform as many functions as possible, thereby reducing operator dependence. VAC AERO has also chosen proven hardware components, suitably hardened for an "industrial shop" environment. The system uses a state-of-the-art Hybrid controller to control the machine functions and furnace temperature. The controller integrates with software running on a personal computer to provide Supervisory Control and Data Acquisition (SCADA). Operator interface is provided though an LCD touch-screen mounted in a control panel. An extensive range of standard displays is available.

    The key benefits of this system are:

    • Compatible with plant wide SCADA and network integration.
    • Process cycle validation.
    • Extensive alarm and event management and reporting.
    • Temperature control using advanced algorithms, auto tuning, and multiple PID loops.
    • Operator sign-on/sign-off security provides up to 255 control levels to limit operator control of individual items of plant and equipment.
    • Enhanced maintenance and troubleshooting management and trending.

    Vacuum Instrumentation: A Vacuum Gauge Controller with 2 station, thermocouple gauge and 1 station Penning (cold cathode) gauge is used to monitor the chamber and the pumping system. This instrument is integrated with the process controller to provide dedicated setpoints that control all critical vacuum-related process functions.

    Overtemperature Safety Controller: Digital manual set 0°F - 3100°F, Type S.

    Power Supply: The heating element power is supplied by an A.C. water cooled power supply containing single phase VRT assemblies. Each VRT has a 0 – 100% trim control for optimum temperature uniformity in the hot zone.

    FURNACE COOLING SYSTEM:

    Furnace water system consists of a compact manifold containing all necessary pressure regulators, valves, pressure switches and flow regulators with supply and drain hoses and fittings. As an option, VAC AERO can provide a Dual Loop Cooling System to supply coolant to the furnace.

    INSTALLATION AND START UP ASSISTANCE

    The system is shipped complete, tested and ready for installation. VAC AERO offers installation supervision or complete installation services. After installation, a qualified VAC AERO technician will visit the site to commission the equipment and provide instruction in furnace operation. As part of every furnace contract, VAC AERO also provides pre-delivery training in heat treating processes furnace operation and maintenance.

    pdf_fileicon.gifDowload VAV Series Furnace Specs

    pdf_fileicon.gifDowload VAV series Auxiliary System Product Sheet

    Share this post

    Submit to DiggSubmit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

    VAC AERO News, Education & Training

    vacuum-heat-treatingStay Up-to-Date with Our Vacuum Heat Treating Newsletter! SUBSCRIBE NOW

    With an ever-increasing need for knowledge of vacuum processing and the intricate functions of complex vacuum furnaces, better training and education means having the necessary tools for the continued success of your heat treat operation. We here at VAC AERO want to continue keeping you informed through valuable and relevant information on topics such as vacuum processing, operations, maintenance and troubleshooting, as well as hints, tips and real world advice from our panel of industry experts.

    Please check out our Newsletter Archives to access dozens of published articles since 2007, or check out our online Educational Resources for a more complete list of educational and training materials.

    Vacuum Technology with "The Heat Treat Doctor"

    vacuum-heat-treatingA Layman’s Guide to Understanding The Theory of Gases

    The movement of gases is an important and interesting subject but one often dismissed as a topic best left to scientists. However, the Heat Treater needs to know something about the basic nature (theory) of gases and in particular how they behave in vacuum. The main difficulty is that too much theory tends to become a distraction. Our focus here will be to better understand what goes on inside a vacuum furnace. One definition of a gas is that it is simply a collection of molecules in constant motion (Fig. 2). The higher the temperature, the faster these molecules move, and as one might expect, the motion of gas molecules stops or dramatically slows down at or near absolute zero (0°K). As molecules speed up with an increase in temperature, there is an increase in their kinetic energy (or energy of motion).

    Vacuum Brazing with Dan Kay

    vacuum-furnacesBraze Joint Design: How Much Overlap is Enough?

    A half century ago (back in the early 1960’s) a lot of research work was done by The American Welding Society (AWS) Committee on Brazing and Soldering to determine appropriate criteria for brazing lap joints (the preferred type of joint design for assemblies requiring the ability to withstand high pressure in service, such as gas bottles, etc.). The results were published in their committee report: AWS C3.1 in 1963, one of the recommendations of which was that joints should have an overlap of 3T or more, where “T” is the thickness of the thinner of the two sheet metal pieces being brazing together. Here’s how that recommendation came about.  The AWS C3 committee arranged to conduct a series of round-robin testing in ten different laboratories around the country, using two different shear-type joint designs, four different base metals, and three different types of brazing filler metals (BFMs), for a total of about 1200 brazed shear test specimens.

    Metallography with George Vander Voort

    vacuum-furnaceMetallographic Preparation of Titanium and Its Alloys

    Experiments were conducted using three-step preparation procedures for titanium and its alloys.  For CP titanium and alpha-titanium alloys, use of an attack-polishing agent in the third step was required to obtain good results.  The experiments defined optimum surfaces for each step and operating conditions.  Two-phase, a-ß alloy specimens are significantly easier to prepare than a single-phase a specimen. The method does yield perfect polarized light response with a-phase alloys, such as commercial-purity titanium. Titanium and its alloys have become quite important commercially over the past fifty years due to their low density, good strength-to-weight ratio, excellent corrosion resistance and good mechanical properties.  On the negative side, the alloys are expensive to produce.

    Vacuum Pump Practice with Howard Tring

    vacuum furnacesFive Main Reasons for using Vacuum - Part 4

    This article continues the series of five reasons that vacuum is used in science and industry; to provide a working force, to remove active and reactive constituents, to remove trapped and dissolved gases, and to decrease thermal transfer. If you commute to work by car and your drive is an hour or so, you may well take a coffee or another hot or cold beverage in your own personal container to drink on the way. Often this type of container is a vacuum insulated cup with a lid. A step up from that, if you work on a jobsite for example, would be a vessel that holds several cups of liquid for all day use. You may know these as “Thermos” or “Aladdin” flasks which are two of the trade names for vacuum insulated containers. Let’s discuss the thermodynamics of vacuum insulated vessels and then look at other uses for them.

    Front and Bottom Loading Vacuum Furnaces

    vacuum heat treating furnacesVAC AERO offers complete turnkey services, including planning, designing, building and installation of vacuum furnace systems and controls. VAC AERO’s experience, proven through decades of service in commercial heat treating, has provided us with valuable insight into the changing needs and rigorous demands of our furnace customers. As a result, VAC AERO has developed a keen understanding of the design and performance of vacuum furnace systems built to meet the most stringent requirements for reliability. VAC AERO’s vacuum furnace design innovations are thoroughly tested in our own heat treating facilities before being offered to our customers. That means better quality, reliability and efficiency to maximize uptime and productivity. Horizontal vacuum models provide great flexibility for general heat treating and brazing applications and Vertical bottom-loading models are ideal for processing large circular and/or long parts.

    brands
    Site design by:
    MainlySunny.com
    Site powered by: Joomla