• custom vacuum furnaces
  • honeywell vacuum control systems
  • Hot Zone Rebuilds
  • VAH Series Horizontal, Front-loading, Vacuum Heat Treating and Brazing Furnaces
  • vacuum furnace systems and controls quote
  • vacuum technology education and training
Vacuum Furnace Systems, controls and Manufacturing
Vacuum Brazing and Vacuum Heat Treating Services
Thermal Spray Coating services, Plasma and High Velocity Oxy-fuel (HVOF) Spray Coatings and Inorganic Paint and Pack Coatings
Vacuum Furnace Technology column by Dan Herring, Metallography column by George Vander Voort, Vacuum Brazing column by Dan Kay, Vacuum Pump column by Howard Tring and other Educational Resources

Vertical vacuum furnaces combine fast cycle times and quenching speeds to provide better uniformity of large production parts with complex geometries and are ideal for processing large circular parts such as rings, stators or engine casings and long parts like shafts or rolls.

CLICK HERE  for Standard Furnaces Sizes

vacuum-furnace-v350The standard VAV Series Vertical, Bottom-loading, Vacuum Heat Treating and Brazing Furnace can be customized to suit unique applications such as high pressure gas quenching, high temperature heat treating, ultra-clean processing and more.

The furnace is designed to have fast heating rates to very uniform temperatures at high vacuum levels. Standard units are equipped with a gas quench system capable of cooling the load rapidly from processing temperatures at quench pressures up to two bar.

Advanced microprocessor controls are used exclusively to ensure precise control and repeatability. VAC AERO control systems can be integrated with internal networks and offer extensive data collection capabilities. VAC AERO also manufactures auxiliary equipment for quench gas storage and furnace cooling requirements.

CLICK HERE TO VIEW ACTUAL VACUUM FURNACE PRODUCTION SPECIFICATIONS

VAC AERO Vacuum Gas Quench Furnace features and capabilities include:

  • Operating temperatures up to 2400°F (1315°C).
  • Ultimate vacuum levels in the 10-6 torr range.
  • Modular hot zone design for easy maintenance.
  • All-metal hot zones are available for ultra-high vacuum processing.
  • Alternatively, economical graphite-based insulation provides extended durability.
  • Heating elements available in lightweight curved graphite or molybdenum strip.
  • Selectable gas quench pressures from 2 bar to 10 bar.
  • Fully automated control systems including PC-based controls with remote access.
  • Optional convection heating capability.

STANDARD OPERATING TEMPERATURE RANGE: 1000°F - 2400°F (538°C - 1315°C)

TEMPERATURE UNIFORMITY: Meets or Exceeds AMS 2750 Requirements.


HOT ZONE:

VAC AERO hot zones have unitized construction for easy removal and maintenance. Lightweight design with low thermal mass and inertia for faster quenching and long life.

  • Work Load Size: Standard sizes up to 84” diameter x 84" high. Larger models are also available.
  • Heating Elements: Customer’s choice of lightweight curved graphite, pure or lanthanated molybdenum strip.
  • Hearth: Constructed with quickly removable hearth rails of pure molybdenum designed to support uniformly distributed loads up to 4000 lbs at 2400°F.

    vert_hot_zone-3.gifRadiation Shields: (Graphite-based Construction):

    The standard graphite-based insulation package consists of three layers of carbon felt with a inner facing of graphite foil bonded carbon composite for added protection and enhanced reflectivity. The heat shield package is supported by a stainless steel assembly that also acts as a manifold to distribute the quenching gas uniformly throughout the workload.

    Radiation Shields (All-Metal Construction):

    For ultra-clean processing applications, VAC AERO also offers an all-metal hot zone construction. The standard all-metal insulation package consists of two layers of pure molybdenum sheet backed by three layers of stainless steel sheet. The heat shield package is supported by a stainless steel assembly that also acts as a manifold to distribute the quenching gas uniformly throughout the workload.

    FURNACE CHAMBER:

    The chamber and heads are a double-wall water-cooled design, primed and painted the customer's choice of colour. The chamber is equipped with all necessary thermocouple jacks, gauge ports, pumping ports and gas quench entries conveniently located for easy access. The tank assembly is vertically aligned with a bottom opening load head. The bottom head and the load are raised and lowered smoothly by a constant speed, ball screw driven lifting jack. Once lowered, the bottom head rolls out from beneath the furnace by means of a powered drive assembly to allow 360° access to the load. The tank is equipped with a powered rotary clamping system to secure the bottom head during processing. A "ground fault" system is used to detect if the load or fixtures touch the heating elements during loading or unloading and will stop the elevator to prevent damage.

    VACUUM PUMPING SYSTEM:

    The vacuum pumpdown is automatic and interlocked. The VAC AERO design uses a holding pump to maintain a low pressure on the diffusion pump foreline at all times. This feature, combined with proper timed sequencing of vacuum valves, virtually eliminates backstreaming of pump oils.

    • Mechanical Pump: Roughing Pump and Booster combination appropriately sized for furnace volume.
    • Diffusion Pump: Varian series complete with charge of Dow Corning fluid.
    • Holding Pump: Rotary vane pump.
    • Main, Roughing and Foreline Valves: Right angle poppet valve with electropneumatic operation.
    • Partial Pressure Capabilities: The furnace can be operated at partial pressures up to 1 torr (1000 microns) of inert gas (argon or nitrogen, whichever is used for quenching). Failsafe hydrogen partial pressure systems are also available.

    GAS QUENCH SYSTEM:

    VAC AERO’s IG Series Quench Gas Storage Systems are available as an option.

    External recirculating inert gas quenching system distributes quench gas through circumferentially located internal nozzles for rapid, uniform cooling of the work load. The system includes:

    • Quench blower powered by electric motor with soft start.
    • Special high efficiency tube/fin heat exchanger.
    • Complete quench piping.
    • Selectable operating pressure.

    vertical_hardwarealarms.gifPROCESS CONTROLS with SCADA:

    The VAC AERO control system is programmable and logic based. The design philosophy of VAC AERO is to simplify control by using the program capabilities to perform as many functions as possible, thereby reducing operator dependence. VAC AERO has also chosen proven hardware components, suitably hardened for an "industrial shop" environment. The system uses a state-of-the-art Hybrid controller to control the machine functions and furnace temperature. The controller integrates with software running on a personal computer to provide Supervisory Control and Data Acquisition (SCADA). Operator interface is provided though an LCD touch-screen mounted in a control panel. An extensive range of standard displays is available.

    The key benefits of this system are:

    • Compatible with plant wide SCADA and network integration.
    • Process cycle validation.
    • Extensive alarm and event management and reporting.
    • Temperature control using advanced algorithms, auto tuning, and multiple PID loops.
    • Operator sign-on/sign-off security provides up to 255 control levels to limit operator control of individual items of plant and equipment.
    • Enhanced maintenance and troubleshooting management and trending.

    Vacuum Instrumentation: A Vacuum Gauge Controller with 2 station, thermocouple gauge and 1 station Penning (cold cathode) gauge is used to monitor the chamber and the pumping system. This instrument is integrated with the process controller to provide dedicated setpoints that control all critical vacuum-related process functions.

    Overtemperature Safety Controller: Digital manual set 0°F - 3100°F, Type S.

    Power Supply: The heating element power is supplied by an A.C. water cooled power supply containing single phase VRT assemblies. Each VRT has a 0 – 100% trim control for optimum temperature uniformity in the hot zone.

    FURNACE COOLING SYSTEM:

    Furnace water system consists of a compact manifold containing all necessary pressure regulators, valves, pressure switches and flow regulators with supply and drain hoses and fittings. As an option, VAC AERO can provide a Dual Loop Cooling System to supply coolant to the furnace.

    INSTALLATION AND START UP ASSISTANCE

    The system is shipped complete, tested and ready for installation. VAC AERO offers installation supervision or complete installation services. After installation, a qualified VAC AERO technician will visit the site to commission the equipment and provide instruction in furnace operation. As part of every furnace contract, VAC AERO also provides pre-delivery training in heat treating processes furnace operation and maintenance.

    pdf_fileicon.gifDownload VAV Series Furnace Specs

    pdf_fileicon.gifDownload VAV series Auxiliary System Product Sheet

     

    Share this post

    Submit to DiggSubmit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

    VAC AERO News, Education & Training

    vertical-vacuum-furnaceVAC AERO Receives Orders for 3 Replacement Hot Zones

    VAC Burlington, Ontario, February 16, 2015 - VAC AERO has recently received orders for three complete all-metal hot zone refurbishments for customers in Florida, Connecticut and Indiana, in the Aerospace, Medical and Commercial Heat Treatment industry sectors. The retrofit work is for two horizontal and one vertical furnace. VAC AERO hot zones feature unitized construction for easy removal and maintenance. The lightweight design’s low thermal mass enables faster quenching and longer life. The heat shield package consists of one layer of .020” thick lanthanted molybdenum (Mola) sheet backed by one layer of .010” thick molybdenum sheet, and three layers of .014” stainless steel sheet.

    Vacuum Technology with "The Heat Treat Doctor"

    Figure-1 nlTips for Selecting Vacuum Furnace Equipment – Part Two

    We continue our discussion on the many factors that must go into the decision making process during the acquisition phase of a vacuum furnace. Part One focused on how one goes about choosing the right furnace for the job and talked about the various choices for hot zones (e.g. insulation, heating elements, etc.). We now continue this discussion by looking at other common vacuum furnace features and options. Recall that the four common elements of any vacuum furnace are: Hot zone (c.f. Part One), Heating elements (c.f. Part One), Pumps and controls. Once decisions have been made in these areas, other ancillary items (e.g. partial pressure control, loaders, etc.) must also be considered and will be talked about here as well.

    Vacuum Brazing with Dan Kay

    gas-quench-vacuum-furnaceGas-quenching when vacuum-brazing – any dangers?

    A number of brazing shops today combine brazing and heat-treatment in their vacuum furnaces to join components together and then obtain certain desired base-metal properties in those brazed components via rapid cooling (quenching) immediately after brazing is done, and before the components are removed from the furnace. Thus, the same vacuum-furnace brazing cycle combines brazing and heat-treatment, yielding clean brazed components with special base-metal properties to meet unique end-use service conditions. Vacuum furnaces today offer a number of options regarding the introduction and use of circulating gases in the furnace hot-zone during brazing processes.

    Metallography with George Vander Voort

    5 nlMetallographic Imaging Modes

    The reflected light microscope is the most commonly used tool for the study of the microstructure of metals. It has long been recognized that the microstructure of metals and alloys has a profound influence on many of their properties. Mechanical properties (strength, toughness, ductility, etc.) are influenced much more than physical properties (many are insensitive to microstructure). The structure of metals and alloys can be viewed at a wide range of levels - macrostructure, microstructure, and ultra-microstructure. Microstructural examination should always begin with the light microscope progressing from low magnifications to higher magnifications, followed by the use of electron instruments, as needed.

    Vacuum Pump Practice with Howard Tring

    diffusion-pump nlMaintaining Oil Diffusion Pumps

    Even as turbomolecular vacuum pumps have displaced most small laboratory sized oil diffusion pumps these days because of perceived ease of use and cleanliness, most high vacuum heat treating furnaces still rely on a large oil diffusion pumps to generate the pressures below about 10-3 Torr needed for many metal conditioning processes. The main reason for this is that turbomolecular vacuum pumps have a physical size limit due to the high rotational speed of the rotor. That size limit is around 320 mm or 13 inches inlet diameter and may vary a small amount from manufacturer to manufacturer. In many cases the pumping speed may not be high enough as it is directly related to the inlet size of the pump.

    Front and Bottom Loading Vacuum Furnaces

    vacuum furnace-0115Constructed of the finest materials and craftsmanship, VAC AERO’s high performance vacuum furnaces are operator friendly and designed to minimize maintenance and downtime to deliver outstanding quality and  value to commercial and in-house heat treaters alike. VAC AERO’s vacuum furnaces are designed for rapid heating rates to very uniform temperatures at high vacuum levels and can be customized to suit unique applications such as high pressure gas quenching, high temperature heat treating, ultra-clean processing and more. VAC AERO’s high efficiency hot zones are designed for easy maintenance and reduced energy consumption. Our external quench system allows for easy maintenance of the heat exchanger and quench motor. A high efficiency blower and motor combine fast cycle times and quenching speeds to provide uniform gas distribution and superior cooling performance from processing temperatures at pressures of up to 10 bar.

    brands
    Site design by:
    MainlySunny.com
    Site powered by: Joomla