Vacaero

Manufacturers of heat treating and brazing vacuum furnaces and controls, complete hot zone and vacuum furnace retrofits, thermal spray coatings, plasma, HVOF and paint coating services.

VAC AERO Service Experience Trust
Canada FrançaisAccessibility |
  • Home
  • Company
  • Vacuum Furnaces
  • Thermal Processing
  • Coatings
  • Service & Support
  • Resources
  • Contact Us
  • Request for Quote

Vacuum Pump Maintenance

August 23, 2016 by VAC AERO International

Vacuum Pump Maintenance

To maximize your investment and produce repeatable high-quality process results, it is mandatory to institute a thorough pump preventative maintenance program. In a pump’s normal operating life, nearly all unexpected vacuum pump failures can be prevented, and when carefully maintained, a vacuum pump will provide years of reliable service.

Be Organized and Document Everything. Start by generating a checklist of routine maintenance activities. The pump manufacturer typically provides this as part of the operating manual. Second, incorporate a maintenance log documenting all routine maintenance, repairs and component replacement. The log will play a critical role in diagnosing future problems, scheduling various maintenance activities, and stocking spare parts. Install a running hour meter to document the number of operating hours on the pump between service activities and enter this into the log. If possible, measure and electronically record the vacuum before and after the pump during every operating cycle, as well as the pumpdown times and ultimate vacuum level achieved in the furnace. This information is often collected and stored as data points in the furnace’s data acquisition system for process reasons. It can also be useful for planning and scheduling maintenance. Changes in these variables can be programmed into the furnace control system to notify the operator when a maintenance inspection or a specific maintenance activity is necessary.

Roots Blowers (aka Booster Pumps)

July 12, 2016 by VAC AERO International

Roots Blowers (aka Booster Pumps)

Booster pumps (aka Roots blowers or intermediate stage vacuum pumps) fall into the class of dry, gas transfer pumps. As a dry pump, they do not introduce oil or water into the pumped gas stream. Gas transfer is accomplished by mechanically means, that is the transfer of pumped gas molecules, rather than their collection, as with, for example, cryogenic or turbomolecular pumps. 

The words “Roots blower” are synonymous with these pumps and the reason they are also commonly referred to as booster pumps is that they are mounted at the inlet of a primary/backing pump (such as a rotary vane, claw pump, or screw pump). They “boost” the performance of the primary pump improving pumpdown speed (much as a relay race in which the baton is passed from one runner to the next). The combination of Root blower and primary pump provides roughly a seven-fold increase in pumping speed and a ten-fold increase in pressure, in comparison to a primary pump alone.

Vacuum Pump Oil: The “Circulatory System” of the Vacuum Furnace

June 14, 2016 by VAC AERO International

Vacuum Pump Oil: The “Circulatory System” of the Vacuum Furnace

Just as vacuum pumps can be considered the heart of the vacuum furnace, so too can the oil be thought of as its circulatory system. The selection and properties of the oil are critical to proper furnace operation. Pump oil serves different purposes in different types of pumps, and even has different functions within the same pump. In addition to lubrication, it helps provide the seal on rotary vane and other wet pumps, and serves as the media to propel the pumped gas via kinetic action in diffusion pumps.

Oil Formulations – Different pump oil formulations are specifically designed for different pump applications and careful consideration must be given to the oil selection. Typical motor oil, for example, is not sufficiently refined for use in a vacuum pump, has insufficient resistance to chemical attack, and contains additives that may be detrimental to the process being performed in the vacuum furnace. In addition, the viscosity must be considered. Lower viscosity oils are used for lower operating temperatures, and for smaller pumps, and medium viscosity oils are used for medium to large pumps. Temperature resistance is also critical, as many pumps operate at high temperatures, and the oil must be rated for these temperatures. Many of the oils used in vacuum pumps are not traditional oils at all, but made of silicone or other non-hydrocarbon fluids.

Dry Pumps: Claw Pumps

March 23, 2016 by VAC AERO International

Dry Pumps: Claw Pumps

Every industrial vacuum furnace system uses a primary (aka mechanical) pump, which is also commonly referred to as a “backing” pump when either used in series with a booster pump, or used with both a booster and secondary (“high vacuum”) pump combination, such as a diffusion pump. These primary pumps are further divided into “wet” pumps (e.g., oil sealed rotary vane style or liquid ring pumps) or “dry” pumps (e.g., claw, hook or screw). Of the dry primary pumps, the most common types are the claw pump and the screw pump. 

Dry pumps are being increasing popular as an alternative to oil sealed rotary vane pumps for many medium and high vacuum applications (e.g., in low-pressure vacuum carburizing where fine granular soot is carried from the process into the pump). Designers and users of vacuum furnaces must have a good understanding of how claw and screw pumps operate. This includes the principles of operation, pump design, sealing, operating characteristics, features, purging, and ancillary devices.

An Introduction to Vacuum Pumps

January 13, 2016 by VAC AERO International

An Introduction to Vacuum Pumps
When designing or operating a vacuum system, it is critical to understand the function of the vacuum pumps. We will review the most common types of vacuum pumps, their principles of operation and where in the system they are used.

Vacuum pumps are categorized by their operating pressure range and as such are classified as primary pumps, booster pumps or secondary pumps. Within each pressure range are several different pump types, each employing a different technology, and each with some unique advantages in regard to pressure capacity, flow rate, cost and maintenance requirements. Regardless of their design, the basic principle of operation is the same. The vacuum pump functions by removing the molecules of air and other gases from the vacuum chamber (or from the outlet side of a higher vacuum pump if connected in series).

Conductance in Vacuum Pumping Systems

October 12, 2015 by VAC AERO International

Conductance in Vacuum Pumping Systems
When designing a vacuum system it is important to take into account the system conductance. What is Conductance and Why Does it Matter? Conductance is the characteristic of a vacuum component or system to readily allow the flow of gas and can be thought of as the inverse of resistance to flow. It must be closely considered when designing a vacuum system and selecting the pump and other components, otherwise, your vacuum chamber will take too long to reach the pressure required.

Well-designed piping of vacuum equipment, as well as proper component selection, increases production efficiency by minimizing the vacuum pumping time. It also minimizes energy use, making your equipment less expensive to operate. Ignoring the principle of conductance and designing the system with only physical configuration and flow rates in mind, can cause delayed equipment startup, plant downtime, and process inefficiency because if a problem is found after startup, it can take considerable time and money to correct.

What is the Purpose of a Vacuum Pump

September 7, 2015 by VAC AERO International

What is the Purpose of a Vacuum Pump

To successfully process component parts in a vacuum furnace, we need to create and control the “atmosphere” surrounding the work. In general, applications run in vacuum furnaces can be broken down into five main (5) categories: 1) Processes that can be done in no other way than in vacuum; 2) processes that can be done better in vacuum from a metallurgical standpoint; 3) processes that can be done better in vacuum from an economic viewpoint; 4) processes that can be done better in vacuum from a surface finish perspective and, 5) process that can be done better in vacuum from an environmental perspective.

A principal difference between vacuum heat treatment and all other forms of thermal processing is the absence of, or perhaps better stated, the precise control of surface reactions. In addition, vacuum processing can remove contaminants, and under certain circumstances degas or convert oxides found on the surface of a material. Typical vacuum applications include industrial, food and packaging, coatings, analytical and medical technology, solar, semiconductor technology and research and development. In the heat-treating industry typical processes involve: Brazing, Hardening, Annealing, Case Hardening (e.g. carburizing, nitriding), Sintering, Tempering and Special Processes (e.g. degassing, diffusion bonding). 

  • « Previous Page
  • 1
  • 2
  • 3
  • 4
  • 5
  • Next Page »
  • Vacuum Heat Treating: Education & Training
    • News & Announcements
  • Vacuum Technology with The Heat Treat Doctor
  • Vacuum Pump Technology: Education & Training
  • Metallography with George Vander Voort
  • Q’s and A’s
  • “What’s Hot!” Newsletter
  • Glossary Metallurgical Terms
Vertical vacuum furnace specifications
horizontal vacuum furnace specifications
Vacuum Furnaces
Vacuum Furnace Zone Rebuilds
Technical Articles and Resources

Specialists in Vacuum Furnace Technology - High Quality Vacuum Furnace Manufacturer

COMPANY

  • VAC AERO Products & Services
  • Company History
  • Certificates & Approvals
  • Employment Opportunities
  • Values & Commitment
  • Corporate Sponsorship
  • Corporate Brochure
  • Terms & Conditions of Use
  • Privacy Policy

FURNACE MANUFACTURING

  • Horizontal Furnace Specs
  • Vertical Furnace Specs
  • Hot Zones
  • Control Systems
  • Custom Vacuum Furnaces
  • Quality Control
  • Service & Support
  • Furnace Request For Quote (RFQ) Form

THERMAL PROCESSING

  • Ontario – Plant 1
  • Ontario – Plant 2
  • Quebec – Thermal Processing Division
  • Specific Heat Treating & Brazing Approvals
  • Metallurgical Services Matrix

COATINGS

  • Quebec Coatings Division
  • HVOF Spray System
  • Specific Coating Approvals
  • Metallurgical Services Matrix

SERVICES & SUPPORT

  • Furnace Rebuilds & Upgrades
  • Hot Zone Rebuilds
  • Process Controls Upgrades
  • Ordering Parts
  • Field Service
  • Training Seminars

© Copyright 2016 VAC AERO - All rights reserved. Site Map Contact Terms and Conditions Privacy