Vacaero

Manufacturers of heat treating and brazing vacuum furnaces and controls, complete hot zone and vacuum furnace retrofits, thermal spray coatings, plasma, HVOF and paint coating services.

VAC AERO Service Experience Trust
Canada FrançaisAccessibility |
  • Home
  • Company
  • Vacuum Furnaces
  • Thermal Processing
  • Coatings
  • Service & Support
  • Resources
  • Contact Us
  • Request for Quote

Use of the Scanning Electron Microscope in Failure Analysis

February 2, 2015 by George Vander Voort

Use of the Scanning Electron Microscope in Failure Analysis

Commercial introduction of the Scanning Electron Microscope (SEM) in 1965, and its subsequent rapid development and implementation in metallographic laboratories, has had a profound influence on failure studies. The chief advantage of the SEM is its great depth of field in comparison of the light microscope. Observations can be made over a much wider range of magnifications including those above the range for light microscopes (and those below the range of TEM replicas). Examination of fracture features by SEM is much simpler than through the study of replicas with the Transmission Electron Microscope, TEM. A further advantage of the SEM is the chemical analytical capability of spectrometers that can be attached to the microscope, Energy-dispersive Spectrometers (EDS) being the most common.

The study of fractures with the unaided eye has been practiced since antiquity chiefly for controlling the quality of metals production. R. A. F. de Réammur may have been the first to examine and publish drawings of fractures examined at high magnifications, at least 100X, in 1722. R. Mallet appears to have been the first to link fracture appearance to service performances in a study of failed cannon barrels published in 1856. Adolf Martens may have been the first to study both fracture surfaces and the underlying microstructures in 1878 followed by the first description of fracture surface features in 1887 when he showed that these lineal features could be traced backward to identify the fracture origin.

Temperature Measurement in Vacuum Furnaces

January 21, 2015 by VAC AERO International

Temperature Measurement in Vacuum Furnaces

In any heat treating cycle, there are two important considerations concerning temperature: the temperature of the furnace hot zone which is generating the heat input, and the temperature of the actual workload. Heating by direct radiation, the main heating mechanism in vacuum, tends to be a slower process than other heating mechanisms such as convection or conduction.  As a result, there are times in the heat treating cycle, particularly during heat up, when the load will be at a lower temperature than the furnace hot zone.  This is known as temperature lag.  Hot zone temperature is controlled and measured through two (or more) thermocouples located close to the heating elements.  One thermocouple, the control thermocouple, is connected to the thermal process controller which transmits signals to control the amount of power directed to the furnace elements. BY JEFF PRITCHARD

Oil for Vacuum Pumps

January 14, 2015 by VAC AERO International

Oil for Vacuum Pumps

In the world of mechanical oil sealed rotary vacuum pumps there is a need for a variety of oils and fluids to suit the specific type of pump, its duty and the process it is used on. This discussion covers high vacuum pumps only, such as are used in the heat treating and vacuum furnace industry. These same vacuum pumps are used in many other industrial and scientific applications and have to work under many different types of conditions including one that many people expose their pumps too – neglect!.

Rotary vane vacuum pumps are available as direct drive (usually 1800 rpm) and vee belt drive (between 400 and 500 rpm) versions. Rotary piston vacuum pumps are generally vee belt driven and run at about 500 rpm. The work duty of a vacuum pump can vary between intermittent use and running continuously. They can also be used for cyclic duty, to evacuate a loadlock for example, where the pump evacuates a chamber from atmosphere to vacuum every few minutes. The vacuum process can also vary, from clean air pumping to hazardous gas, wet vapor pumping and dirty/dusty atmospheres..

Safety in the Metallography Laboratory

January 14, 2015 by George Vander Voort

Safety in the Metallography Laboratory

The metallographic laboratory is a relatively safe working environment; however, there are dangers inherent to the job. Included in these dangers is exposure to heat, acids, bases, oxidizers and solvents. Specimen preparation devices, such as drill presses, shears and cutoff saws, also present hazards. In general, these dangers can be minimized if the metallographer consults documents such as ASTM E 2014 (Standard Guide on Metallographic Laboratory Safety) and relevant Material Safety Data Sheets (MSDS) before working with unfamiliar chemicals. Common sense, caution, training in basic laboratory skills, a laboratory safety program, access to safety reference books – these are some of the ingredients of a recipe for laboratory safety.

Safe working habits begin with good housekeeping. A neat, orderly laboratory promotes safe working habits, while a sloppy, messy work area invites disaster. Good working habits include such obvious, commonsense items as washing the hands after handling chemicals or before eating. Simple carelessness can cause accidents. For example, failure to clean glassware after use can cause an accident for the next user. Another common problem is burns due to failure to properly clean acid spills or splatter. 

Vacuum Heat Treatment of Fasteners

January 12, 2015 by VAC AERO International

Vacuum Heat Treatment of Fasteners

Fastener applications are demanding. Whether fasteners are being used in the petrochemical industry, in medical or mining applications, for assembly of marine or nuclear components or in the aerospace, automotive or construction world, vacuum processing allows us to repeatedly achieve the highest quality and metallurgy.

Most fastener materials, including stainless steels and superalloy grades, benefit from or actually require vacuum processing for heat treatment instead of being run under protective atmospheres. In general, there are three main sets of applications where vacuum heat treatment is used; processes that can be done in no other way than in a vacuum, processes that can be done better in a vacuum from a metallurgical standpoint and processes that can be done better in a vacuum from an economic standpoint. The absence of surface reactions or the ability to precisely control them is the main difference between vacuum heat treatment and all other forms of heat treatment. Vacuum processing can also remove contaminants from parts, and in some instances, degas or convert oxides found on the material’s surface.

Selective Etching and Quantitative Measurements Used to Assess the Thermal Exposure to the Lower Head of the Three-Mile Island Unit 2 Nuclear Reactor

December 5, 2014 by George Vander Voort

Selective Etching and Quantitative Measurements Used to Assess the Thermal Exposure to the Lower Head of the Three-Mile Island Unit 2 Nuclear Reactor

The accident at Unit No. 2 of the Three Mile Island nuclear reactor (TMI-2) on March 28, 1979 was the worst nuclear accident in US history and crippled the nuclear industry. It was not possible to remove specimens from the lower head until January – March 1990. Fourteen of the fifteen specimens removed by electrical discharge machining were from under the debris pile that accumulated on the lower head due to melting of ~19,000 kg (~45%) of the core. Specimens were previously cut from the lower head of a cancelled reactor of very similar size and design destined for Midland, Michigan. These specimens were subjected to controlled heating cycles with peak temperatures from 800 to 1100°C for periods of 1 to 100 minutes. The writer examined both sets of specimens and employed selective etching followed by quantitative metallography (by image analysis) to obtain a far more detailed description of the thermal exposure experienced than had been obtained previously. 

Heat Treatment of Landing Gear

November 19, 2014 by VAC AERO International

Heat Treatment of Landing Gear

The heat treatment of landing gear is a complex operation requiring precise control of time, temperature, and carbon control. Understanding the interaction of quenching, racking, and distortion contributes to reduced distortion and residual stress. Arguably, landing gear has perhaps the most stringent requirements for performance. They must perform under severe loading con­ditions and in many different envi­ronments. They have complex shapes and thick sections. Alloys used in these applications must have high strengths between 260 to 300 ksi (1,792 to 2,068 MPa) and excellent fracture toughness (up to100 ksi in.1/2, or 110 MPa×m0.5). To achieve these design and per­formance goals, heat treatments have been developed to extract the optimum performance for these alloys.

The alloys used for landing gear have remained relatively constant over the past several decades. Alloys like 300M and HP9-4-30, as well as the newer alloys AF-1410 and AerMet 100, are in use today on commercial and military aircraft. Newer alloys like Ferrium S53, a high-strength stainless steel alloy, have been proposed for landing gear applications. The alloy 300M (Timken Co., Canton, OH) is a low-alloy, vacuum-melted steel of very high strength. Essentially it is a modified AISI 4340 steel with silicon, vanadium, and slightly greater carbon and molybdenum content than 4340. The alloy is governed by standard AMS 6417. This alloy has a very good combination of strength (280 to 305 ksi, or 1,930 to 2,100 MPa), toughness, fatigue strength, and good ductility. It is a through hard­ening alloy to large thicknesses. . By D. Scott MacKenzie, Houghton International Inc. Valley Forge, PA

  • « Previous Page
  • 1
  • …
  • 12
  • 13
  • 14
  • 15
  • 16
  • …
  • 34
  • Next Page »
  • Vacuum Heat Treating: Education & Training
    • News & Announcements
  • Vacuum Technology with The Heat Treat Doctor
  • Vacuum Pump Technology: Education & Training
  • Metallography with George Vander Voort
  • Q’s and A’s
  • “What’s Hot!” Newsletter
  • Glossary Metallurgical Terms
voort
Vertical vacuum furnace specifications
horizontal vacuum furnace specifications
Vacuum Furnaces
Vacuum Furnace Zone Rebuilds
Technical Articles and Resources

Specialists in Vacuum Furnace Technology - High Quality Vacuum Furnace Manufacturer

COMPANY

  • VAC AERO Products & Services
  • Company History
  • Certificates & Approvals
  • Employment Opportunities
  • Values & Commitment
  • Corporate Sponsorship
  • Corporate Brochure
  • Terms & Conditions of Use
  • Privacy Policy

FURNACE MANUFACTURING

  • Horizontal Furnace Specs
  • Vertical Furnace Specs
  • Hot Zones
  • Control Systems
  • Custom Vacuum Furnaces
  • Quality Control
  • Service & Support
  • Furnace Request For Quote (RFQ) Form

THERMAL PROCESSING

  • Ontario – Plant 1
  • Ontario – Plant 2
  • Quebec – Thermal Processing Division
  • Specific Heat Treating & Brazing Approvals
  • Metallurgical Services Matrix

COATINGS

  • Quebec Coatings Division
  • HVOF Spray System
  • Specific Coating Approvals
  • Metallurgical Services Matrix

SERVICES & SUPPORT

  • Furnace Rebuilds & Upgrades
  • Hot Zone Rebuilds
  • Process Controls Upgrades
  • Ordering Parts
  • Field Service
  • Training Seminars

© Copyright 2016 VAC AERO - All rights reserved. Site Map Contact Terms and Conditions Privacy